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Abstract

The goal of selecting that one of k 2 Bernoulli populations

which has the largest single-trial "success" probability

P[k] = max{pl,. 'Pk) is treated. Consideration is restricted to pro-

cedures which take no more than n observations from any one of the k

populations. One such procedure is the single-stage procedure of Sobel and

Huyett [1957] which takes exactly n observations from each of the k

populations. We propose a one-at-a-time adaptive sampling rule (R*) which

when used in conjunction with a particular stopping rule (S*) and ter-

minal decision rule (T*) achieves the same probability of a correct

selection as does the single-stage procedure uniformly in (p1,...Pk).

Letting N denote the random total number of observations to terminate

sampling using the procedure (R ,S , we show that n < N < kn-l; for

P[kJ 0 we have P{N = kn-i I p- 1 while for P[I] - 1 we have

P{N = n I pi - 1. For k = 2 the sampling rule R* (the conjugate sampling
"u

rule Th) which is stationary is optimal in the sense that it minimizes

E{NI(pIp 2 )I uniformly in (pl,p2 ) for p1 + p2 > 1 (pl+ p2 < 1) among

all :;ampling rules which use (S*,T*) and which take no more than n observa-

tions from either population; R* has additional optimal properties for

k = 2. The procedure (R*,S*,T*) is generalized for k > 2 to accommodate

such goals as "Selecting the s (I < s < k-l) "best" Bernoulli populations

with regard to order," and is shown to have desirable properties for these

goals as well. Some conjectures are made concerning the optimality of

(R*,S*,T* ) for k > 2. The performance of (R ,S*,T ) is compared for

k > 2 with that of other sequential selection procedures that have been

proposed in the literature. An extensive bibliography is included.

LA_
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Note

This paper will appear in the Proceedings of the Third Purdue Symposium

on Statistical Decision Theory and Related Topics (Eds. S.S. Gupta and J.

Berger) held at Purdue University June 1-5, 1981.



1. Introduction

Let R. (1 < i < k) denote k > 2 Bernoulli populations with corre-

sponding single-trial "success" probabilities p.. Denote the ordered values

of the pi by P[1] " Pk; the values of the p, and the pairing of

the T. with the p[,] (l < i, j < k) are assumed to be completely unknown.

Statistical procedures for the problem of selecting the "best" population,

i.e., the one associated with P[k]' have received considerable attention in

recent years. In a fundamental paper, Sobel and Huyett [1957] proposed a

single-stage procedure employing the indifference-zone approach of Bechhofer

[1954] with the "distance measure" Ai i - p.; their procedure was shown

by Hall [1959] to have the optimum property of being "most economical" among

single-stage procedures. Paulson [1967], [1969], using the distance measures

Ai~j and pi/Pi, proposed the first sequential procedure for this problem.

His open procedure permitted the elimination of "non-contending" populations;

it employed a fixed number of stages with a random number of observations per

stage, the total number of observations (N) required for termination being

an unbounded random variable. Bechhofer, Kiefer and Sobel [1968], Section

12.6.1.4, using the distance measure pi(l-p.)/pl(l-pi) (and A. .) also1 ~ 1 ,]

proposed an open sequential procedure employing a vector-at-a-time (VT)

sampling rule.

Spurred on by the potential of application of such methods in clinical

trials and related areas, there followed a period of considerable research

activity focusing on sequential procedures for this problem; these studies

were spearheaded initially by Milton Sobel, George Weiss, David Hoel and

their collaborators: Sobel and Weiss [1970], [1971a], [1971b], [1972a],

[1972b], Kiefer and Weiss [1971], [1974]; Hoel [1972]; Hoel and Sobel [1972];

Hoel, Sobel, Weiss [1972]; Nebenzahl and Sobel [1972]. During the period
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19'3-1980 a large number of additional papers appeared; all employed the

measure of distance Aiq j  (except Taheri and Young [1974] who used pi/pj).

These papers are listed among our references. An excellent review of many

of these proposed procedures (and others), with particular reference to

adaptive sampling for clinical trials, is contained in Hoel, Sobel and Weiss

[1975b]. A recent text by BUringer, Martin and Schriever [1980] gives an in

depth comprehensive survey of these procedures (and many additional ones);

it treats their derivation, performance characteristics, and uses, and

provides extensive tables for their implementation.

Concurrently, the Bernoulli selection problem was studied employing the

subset approach of Gupta [1956]. The early key papers using this approach

are Gupta, Huyett and Sobel [1957] and Gupta and Sobel [1960]; an up-to-date

summary of more recent results using the subset approach is contained in

Gupta and Panchapakesan [1979], Section 13.2.

The problem of allocating observations among treatments when the total

available number of observations is fixed (fixed patient horizon), with the

objective of assigning a higher proportion of the total number of available

observations to the population with the larger success probability has been

studied in the medical context by Armitage [1960, 1975], Anscombe [1963],

Colton [1963], Cornfield, Halperin and Greenhouse [1969], Zelen [1969], and

Canner [1970], among others. For comments concerning this formulation of the

problem see Sobel and Weiss [1972b].

A somewhat related class of procedures directed toward solutions of the

so-called 2-armed (or multi-armed) bandit problem was investigated by many

research workers: Robbins [1952], [1956]; Bradt, Johnson and Karlin [1956],

Isbell [1959], Feldman [1962], Smith and Pyke [1965], Fabius and van Zwet

[11701, Hrry [1972], [1978], and Rodman [1978], among others. These papers are
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not concerned with the Bernoulli selection problem, but rather focus on

minimizing or maximizing appropriate objective functions, the principal tool

used being dynamic programming.

2. The k-population Bernoulli selection problem

2.1 Earlier approaches

Before we describe our objectives and approach, it will be helpful to

sketch the chronological development of certain statistical aspects of the

Bernoulli selection problem. It perhaps is of historical interest to note

that the Sobel-Huyett [1957] and Gupta-Huyett-Sobel [1957] papers made no

reference to the potential applicability of their procedures to the drug

selection problem or to clinical trials. Such a reference appears first in

Paulson [1967] (although Armitage [1960, 1975], Anscombe [1963] and Colton

[1963] had earlier considered such applications). Sobel and Weiss [1970]

treated the special case k = 2, and emphasized the desirability of mini-

mizing the number of patients on the poorer treatment. With this objective

in mind they studied the performance of the play-the-winner (PW) sampling

rule (introduced earlier by Robbins [1952], [1956], and proposed specifically

for clinical trials by Zelen [1969]). The two procedures studied by Sobel-

Weiss [1970] employed PW and VT sampling rules, the latter having been

proposed earlier by Bechhofer, Kiefer and Sobel [1968] (B-K-S); both pro-

cedures suffered from the fact that the expected total number of observations

(E{N}) required to terminate experimentation approached infinity both for

PW and VT as either P[1 ] - 1 or P[2 ] - 0. To overcome this problem for

VT for k = 2, Kiefer and Weiss [1971] suggested a truncated version of the

B-K-S VT - procedure, and permitted the possibility of a third terminal

decision, i.e., "The two populations are essentially the same." (Later,

Kiefer and Weiss [1974] proposed an analogous truncated version of the
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Sobel-Weiss PW sampling rule.) The procedures of Sobel and Weiss [1971b]

for k = 2 and [1972a] for k > 3 which employed PW sampling and a

stopping rule based on inverse sampling also were vulnerable to P[k] ' 0

since then E{N} + J.

The Sobel-Weiss [1972a] procedure was the first (after Paulson [1967],

[1969]) to consider the case k > 3 for the distance measure A.

Although most investigators studied only the k = 2 case, Hoel and Sobel

[1972], Sobel and Weiss [1972b], Hoel, Sobel and Weiss [1975a], and Schriever

(1978/79] considered the K > 3 case. All restricted consideration to the

goal of selecting the "best" population.

Further work on closed procedures for k = 2 was carried out by Hoel

[1972], Nebenzahl and Sobel [1972], Berry and Sobel [1973], Fushimi [1973],

Kiefer and Weiss [1974], Simon, Weiss and Hoel [1975], Schriever [1979] and

Tamhane [1981]. Bofinger [1978] and Schriever [1978/79] appear to be the

only authors to have considered closed procedures for k > 3. Most of

these procedures employed some variant of PW sampling rules designed to

minimize E{N} and/or E{N the expected number of observations taken

from the population associated with P[1 ].

2.2 Our approach

In this paper we have limited consideration to closed procedures, i.e.,

procedures for which the total number of observations taken from any of the

k > 2 populations is a bounded random variable. We are disenchanted with

open procedures because we believe that they are of little practical use.

(This, of course, is a criticism of all of the ranking and identification

procedures described in Bechhofer, Kiefer and Sobel [1968], and in a

hypothesis testing or acceptance sampling context of the Wald sequential

probability ratio test.) Even if E{N} is "small" relative to the kn
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required by the best competing single stage procedure, the distribution of

N is usually highly skewed to the right, and hence "large" values of N

occur with positive (albeit small) probabilities. This fact discourages

the use of such procedures.

Our reference point is the single-stage procedure of Sobel and Huyett

[1957] which takes exactly n observations from each of the k ? 2

populations. We were able to characterize a class of closed sequential

procedures which achieve the same probability of a correct selection as does

the Sobel-Huyett (S-H) procedure, uniformly in p. Within this class we

have found adaptive procedures which are uniformly in p superior in terms

of E{N} to the S-H procedure. For k = 2 our procedure is optimal

within a certain class.

Our closed sequential procedures for k > 2 are applicable to a broad

class of general ranking and selection goals such as the one described in

equation (6) of Bechhofer [1954], namely, "To select the kt  "best"

populations, the k "second best" populations, etc., and finally the

"worst" populations." Here k ,k ,...,k (t < k) are positive integers
t t 2

such that k k. To illustrate our procedure we consider in Section 3
i=l

the case t 2, k I = k - s, k = s (I s < k - 1) which we call Goal I,

and in Section 4 the ca-? t = s + I, kI  k - s, k2 = k .. k s+1

(1 s < k - 1) which we call Goal II. Other goals not given by (6) in

Bechlinfer [19541 can be handled similarly.

The main difference between our present formulation of the problem and

that adopted in all of the previous papers in this category is that the

: o-called "least-favorable configuration" of the p-values (which plays a

central role when designing an experiment using the indifference-zone approach)

iz. of no concern to us. Our interest is focused on the probability of
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achieving a correct selection for a given n for the particular goal con-

sidered, and in accomplishing this objective with minimum cost (e.g., minimum

E{N} needed to achieve a correct selection). A special virtue of all of our

procedures for k > 2 is that no special tables of constants are necessary to

carry out the procedures, and the procedures are very easy to implement.

We assume throughout that the response (success or failure) of an

experiment is known sufficiently soon that it can influence the choice of

population for the next experiment. This condition is not met in most

clinical trials (although it often can be realized in testing in the physical

sciences). Even if this condition is not met the procedures can sometimes

be used to advantage. (See Remark 5.3.) Also, modifications of the pro-

cedure can be made to good effect if the responses are delayed.

3. Single-stage procedures

In this section we consider single-stage procedures for the Goal I and

Goal II Bernoulli selection problems. Let S.(F.) denote a "success"1 1

("failure") from H . (1 5 i < k). If n observations are taken from Hi'

let yn denote the number of successes yielded by f.1 (l < i < k).

3.1 Single-stage procedure for Goal I

PROCEDURE FOR GOAL I (Selecting the s (l < s < k - 1) "best" of k

populations without regard to order):

Sampling rule (RSS ): Take n observations from each of the

k populations. 
(3.l')

Terminal decision rule (T SS): Compute yi,n (U < i < k).

Let A1 , A2 c A = {l,2,...,k} denote two disjoint sets of order

s and k - s, respectively, such that
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1 y2 (3.1b)

for all iI c A and for all i2 e A . If there are r sets

A (i ) = {A1 , A I (l < i < r) satisfying (3.1b), then select one of
2

them at random and announce for the selected set that A1 , A2 are

associated with {P[k]' P[k-l1]'''P[k-s+l]I and

P [k-s]' ... ,p[l]}, respectively.

3.2 Single-stage procedure for Goal II

PROCEDURE FOR GOAL iI (Selecting the s (1 < s < k - 1) "best" of k

populations with regard to order):

Sampling rule (R SS): Take n observations from each of the

k populations. (3.2a)

Terminal decision rule (T ): Compute y. (1 < i < k).
SS 2.,n-

Let A1 , A2 ... ,As+1 c A = {l,2,...,k) denote s + 1 disjoint sets,

A1 ,...,A s  of order one, A s+ of order k - s, such that

s > Y+ (I < j < s) (3.2b)

Yi n = = -,,

for i. E A. (l 5 j 5 s) and foi all is+ 1 A s+. If there are r
st A(i)

sets A A,A2 , A s+ } I }l i r) satisfying (3.2b), then

select one of them at random and announce for the selected set that

AA 2 ... As and As+ 1  are associated with P[k]' P[k-l]'''''p~k-s+l]

and {p[ks],'...p[l]}, respectively.
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Example 3.1: (k 5, s = 3, n 3)

1 2 13 14 15

S1 S2 S3 S4 F5

S1  S2  S3  S4  F 5

S1 S2 F3  F4 F5

Then A(I) {{i1, {2}, {3}, {4,5}}
(2)

A {{1}, {2}, {4}, {3,5}1

A (3 ) = {{2}, {1}, {3}, {4,51}

A(4 ) = {{2}, {1}, {4}, {3,5}}.

Hence, select one of A (1 < i < 4) at random.

Remark 3.1: The single-stage procedures given in this section for Goals I

and II coincide for s = 1. The case s = 1 was studied in detail by Sobel

and Huyett [1957]. In that paper the common sample size n was chosen to

guarantee certain indifference-zone probability requirements (as in Bechhofer

[1954]) given by their equations (5) and (13).

4. A class of sequential procedures

We now propose a class of sequential procedures for the Goal I and Goal II

Bernoulli selection problems. Let S. (Fm) denote a success (failure) from
1 1

11. at 3;tagc m (1 < i < k, 1 < m < kn). Let n. denote the total number
I - - - = 1,m

of observations taken from Ii through stage m, and let z. m denote the

total number of successes yielded by N . through stage m1

o < i < k, 1 < m < kn).
Theorem 5.1 (in Section 5-1) relates to a class of sequential selection !



procedures which employs a very general class of sampling rules, and a

particular stopping and terminal decision rule specific to the goal (Goal I

or Goal II) under consideration.

Throughout the remainder of this paper we shall let R denote an

arbitrary sampling rule which takes no more than n observations from any

of the k populations. The basis for specifying n (e.g., to guarantee

an indifference-zone probability requirement as in Sobel and Huyett or because

of availability of observations or because of other economic considerations)

is of no concern to us here.

4.1 A class of sequential procedures for Goal I

PROCEDURE FOR GOAL I (Selecting the s (l < s < k - 1) "best" of

k populations without regard to order):

Sampling rule (R): Arbitrary, the only restriction being that at most

n observations can be taken from any of the k populations. Thus,
(4.1a)

e.g., one-at-a-time sampling, play-the-winner sampling, vector-at-a-

time sampling, or multistage sampling can be used.

2;topping rule (S*): Stop sampling at the first stage m at which there

exist two disjoint sets AI,A2 c A = {l,2,...,k} with A1  of order

s and A2 of order k - s, such that

22

z. > z. +n- n. (4.ib)1l~ = 2,m 12,m

for all iI (A 1  and for all i2 EA 2.

Terminal decision rule (T e): If r sets A { Ai ) 1 <r

tie selected set that A1 and A2 are associated with (4.1c)
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{p[k]P[k-l,...p[k-s+l] }and {p[k-s],.-,p[,]}, respectively.

Examples 4.1: For (k = 3, s 1, n 1), stop if

11 1 1T 11 3l 2 1H1 H2 3 H1 2 H3

S1  1 2
3 1 2

(1)Then A = {{3}, {1,2}}. Hence, select A

Examples 4.2: For (k = 3, s = 2, n 1 1), stop if

1 2 3  TI 2  T 3

1 1 2 2
1 SI  F2
F3  1 3

Then A(l) = {{1,2}, {3}}. Hence, select A(1)

Example 4.3: For (k = 5, s = 2, n 3), stop if

1 2 3 n4 15

10 7 S4 3 1

1 2 3 4 5

11 8 5 F2

1 2 3 5
9 6

2 3

Then A( I )  {{1,21, {3,4,51} and A (2) = {,3}, {2,4,5}).

Hence, select one of A M (i 1,2) at random.
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4.2 A class of sequential procedures for Goal II

PROCEDURE FOR GOAL II (Selecting the s (1 < s < k - 1) "best" of

k populations with regard to order):

Sampling rule (R): Arbitrary, the only restriction being that at most

n observations can be taken from any of the k populations. (4.2a)

Stopping rule (S:): Stop sampling at the first stage m at which there

exist s + 1 disjoint sets AA 2, ... 9As,As+ c A = {1,2,...,k}

with Al... ,A of order one, As+ 1  of order k - s, such that

z. > z. + n - n. (1 < j < s) (4.2b)
lism= 1j+lm l j+lm -

for i. E A. (1 < < s) and for all i+ I  A
I I s+ - ~l

Terminal decision rule (T*): If r sets A (i) ... A +
______ _____ ___= {A I ,A2,... ,s+l }

(i < i < r) satisfy (4.2b) then select one of them at random and

announce for the selected set that A,A 2 ,... ,A and As+, are
s (4.2c)

associated with P[k]'P[k-l]'' ' 'p [k - s+ l  and {P[k-], Pl }

respectively.

Example 4.4: For (k = 5, s = 3, n 3), stop if

a1 N2 I3 T14 fl5

6 4 3 2 1S1  S 2  F 3  F F5
1 2 3 4 5

7 5 $13 11 F10
1 2 3 5

8 9 F1 2

1 2 4
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(1) (2)
Then A = f{l}, {3}, {2}, {4,5}1 and A {{1}, {31, {4}, {2,5}}.

Hence, select one of A(i) (i = 1,2) at random.

5. Comparison of some performance characteristics of the single-stage and

sequential procedures.

In this section we compare the probability of a correct selection

achieved by our class of sequential procedures with that of the corresponding

single-stage procedures. We do the same for the total number of observations

required to terminate experimentation for the sequential procedures and the

total sample size required by the corresponding single-stage procedures.

5.1 Probability of a correct selection

If two or more populations have a common p-value, assume that the

populations are tagged in such a way that the ordering of the k populations

is unique. Then a correct selection (CS) for Goal I is achieved if the

selected sets AI,A 2 are associated with {p[k]'P[k-l],'.,p[k-s+l]},

{P[k-s]" .P[1l}, respectively; analogously, a correct selection for Goal II

is achieved if the selected sets A,A 2 ... ,As+1  are associated with {p[k]},

1p k-l]t ... f.. {[k-s+l]}, {p[ks],...,p[l]}, respectively.

We now state our first key theorem relating the P{CS} achieved by our

sequential procedures and the P{CS} achieved by the corresponding single-stage

procedures.

Theorem 5.1:

PI {CS I (Rss,Tss} S PI{CS j (R,S*,T * )} uniformly in P (pl,...,pk

for Goal I, and analogously for Goal II.

Proof: See Appendix A.
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Remark 5.1: Note that if the weak inequality in (4.1b) and (4.2b) were

replaced by a strict inequality, the associated stopping rules would involve

curtailment of the sampling process. Then the conclusion of Theorem 5.1

would be obvious since the resulting sequential procedure and the single-stage

procedure always lead to the same terminal decision. However, such is not

the case when the weak inequality is used. For example, for k > 2, s = 1,

n > 1, we see that (4.1b) calls for stopping if (say) the sequence

S(I< j < n) were obtained for any i (l < i < k) in which situation

(4.1c) would select TH. However, for that same initial sequence curtailed

sampling would require that at least one more observation be taken from all

populations Ii. (j~i, 1 < < k); if these additional observations were such
I

that a total of r -1 additional populations also yielded n S's, then

the curtailment terminal decision rule would select one of these r n-success

populations at random (which is what the single-stage procedure would do).

Thus (4+.1b) and (4.1c) permit earlier stopping than under curtailment,

but sometimes may lead to a different terminal de cision than under curtailment.

Remark 5.2: If sampling continues beyond the stage called for by (4.1b)

for Goal I or (4.2b) for Goal II then the PICS) is not increased

(provided that the total number of observations taken from any population is

at most n). VT sampling for the Bernoulli selection problem always requirrc,

at least as large a total number of observations as would be required by

a one-at-a-time sampling rule (and, in fact, often a very much larger total)

to achieve the same P{CSI for a given data set. Thus, unless VT sampling

is used for (say) "blocking" purposes for the Bernoulli, it should ordinarily

be avo~ided. For an example of the latter situation see Tamhane [1980].
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Remark 5.3: In some areas of application, e.g., in certain types of clinical

trials and in reliability-life studies, the experiments may be started at

different times, and the outcomes (successes or failures) from the k pop-

ulations may be staggered or spaced over time. This might be the case in

experiments which are designed in single-stages as with Sobel-Huyett and for

which n observations are to be taken from each of the k populations. In

such situations for (say) Goal I, the stopping rule (4.1b) and the terminal

decision rule (4.1c) can be applied as each success or failure is recorded.

Then (4.1b) permits the possibility of an early terminal decision although

successes and failures will continue to be recorded as they occur after that

point. These later observations make it possible to estimate the

P (1 < i < k) more precisely. They may lead to a different terminal decision,

but they will not increase the probability of a correct selection.

Remark 5.4: If the common sample size n of the Sobel-Huyett single-stage

procedure was chosen to guarantee the indifference-zone probability require-

ments given by their equations (5) or (13), then A fortiori our class of

sequential procedures for s = 1 guarantees these same probability require-

ments. Although Sobel-Huyett did not consider Goal I or Goal II for s > i,

an analogous result would hold for those goals as well.

Remark 5.5: For large n the normal approximation to the binomial distribution

can be used (as in Sobel-Huyett) to obtain an excellent approximation to the

P{CS} achieved by the single-stage procedure for Coal I or Goal II for spec-

ified s and given k. This computed P{CS} thus holds for our general

class of sequential procedures for the same specified s and given p.

Remark 5.6: A single-stage procedure for selecting the multinomial event

which has the largest probability is described in Bechhofer, Elmaghraby and
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Morse [1959]; only the case s = 1 was considered. Alam and Thompson

[1972] proposed a single-stage procedure for the case s = k - 1. The

sequential procedures employing vector-at-a-time (VT) sampling and

(S*,T*) for the Bernoulli selection problem given for Goal I

(1 < s < k - 1) and Goal II (1 < s < k - 1) in Section 4 of the present

paper are directly applicable to the multinomial selection problem (with

obvious interpretations of notation).

A sequential procedure employing multinomial VT sampling with

curtailment was proposed for the multinomial selection problem (s = 1)

by Gibbons, Olkin and Sobel [1977], pp. 178-183. Our procedure improves on

the G-O-S procedure in that it achieves the same P{CS} uniformly in

p as does theirs (and the single-stage procedure), but our procedure

requires at most as many (and usually less) vector-stages to terminate

sampling. These results with accompanying computations are contained in

Bechhofer and Kulkarni [1981].

5.2 Total number of observations to terminate sampling

In Sections 4.1 and 4.2 we described a class of sequential pro-

cedures for Goals I and II, respectively. For each the sampling rule is

arbitrary, the only restrictions being that the rule adopted take no more

than n observations from any of the k populations, and that it be used

in conjunction with (4.1b) and (4.1c) for Goal I or (4.2b) and (4.2c)

for Goal II. If we denote by N the random total number of observations

that have been taken from the k populations when sampling stops, then it

can be shown that using (4.1b) and (4.1c) for Goal I we have

min{sn, (k-s)n) < N < kn, (5.1)
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or using (4.2b) and (4.2c) for Goal II we have

sn< N kn; (5.2)

if an arbitrary one-at-a-time sampling rule is used, then

N < kn - 1 (5.3)

[or, both Goal I and Goal II. Examples 4.1 and 4.2 show that the lower

bound in (5.1) and the upper bound in (5.3) can be achieved for appro-

priate sampling rules and outcomes. That the procedures are closed is of

particular practical importance.

For either Goal I or Coal II with given (k, s, n), the distribution of

N and hence E{NI p) (and other related performance characteristics of the

sequential procedure) depend on p and the specific sampling rule that is

used. In Sections 6 and 7 we propose a particular sampling rule which has

highly desirable properties when used in conjunction with (S*,T*).

6. An optimal sequential procedure for k = 2

In this section and the next we continue to restrict attention to

arbitrary sampling rules R? which take no more than n observations from

any of the k populations, and which are used in conjunction with (4.1b)

and (4.1c) for Coal I or (4.2b) and (4.2c) for Goal II. We seek

sampling rules within this class which have desirable properties. Indeed we

have been successful in constructing an optimal rule for k =2 for several

definitions of optimality which are of considerable practical importance.

Our results are summarized in Theorems 6.1, 6.2 and 6.3, below.

In the sequel we let N (NS NF) denote the random number of
Mi (i)' (i)

4
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observations (successes, failures) that have been taken from the population with

parameter P[i] (1 < i < k) when sampling stops. Also lets kk

kS F  F k S FN N(i) and N N( ). Then N = N i N +N. We are

k-l
particularly interested in E{N}. However, also of concern is E{ Ni}

i=l

the expected total number of observations taken from the "inferior" populations,

i.e., those having the smaller p-values; this quantity is especially important

in clinical trials where ethical considerations play an important role, and

P is the probability of a "success" using treatment i (1 < i < k).

(See Hoel, Sobel and Weiss [1975b].) For the same reason E{N F } is impor-
k-l F

tant. In each case we seek to make E{N}, E{ N(i)} and E{N as

small as possible. It is obvious that for these objectives it is sufficient

to restrict attention to one-at-a-time sampling rules.

6.1 Minimization of E{N}

We use the following notation for k = 2. For a state

(z1 ,n 1,m; z2 ,m'n2,m ) which does not satisfy (4.1b), let

D = D (z ,n ;Z ,n ) denote the sampling decision at stage mm m l,m l,m 2,m 2,m

(m = 0, 1,...,2n-l). Dm  i means that at stage m the next observation is

to be taken from T. (i 1,2); D = (1,2) means that at stage m the next
o m

observation is to be taken at random from i or T2"

1 2
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Sampling rule (R*):

1 if nl1m  - Zlim  < n 2,m  - z2,m

or
nI  -z n - z, and z!  > z
n1m Zlm n2,m 2,m m 2,m'

D= 2 if nI  - n -z (6.)m l,m Zl,m n2,m Z2,m

or
nl~ - z n z and zz

m lm n2,m - and ,m a I m <

(1,2) if nlim - Zlm n 2,m - z2,m and zl, m = Z 2 ,m
°

Theorem 6.1: Among all sampling rules R used in conjunction with

(S*,T*) for k = 2, R* minimizes E{NI(pI,p 2)I for p1 + P2 > 1.

The conjugate sampling rule * (in which n. - z. and z. ini~m 19m i,m

are replaced by z. and n. - z , respectively, for i = 1,2)i R arerepacedby i~m i,m i,m'

minimizes E{NI (plP 2)} for p1 + p2 < 1. Both R* and R* minimize

E{NI (p1,P2)} for p1 + p2 = 1, and (for synmmetry) one can choose between

them with probability (1/2, 1/2).

Proof: The proof of Theorem 6.1 is quite long, and therefore is not given

here. It is given in detail in Kulkarni [1981] along with the proofs of

Theorems 6.2 and 6.3 which are stated below. These proofs will be

published elsewhere.

a A
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Remark 6.1: Note that R* and R* are stationary, i.e., the rules are

independent of n. (Contrast this result with the one described in

Remark 6.5.)

Example 6.1: To illustrate the sequential procedure which employs

(R*,S*,T*) for k 2, s = 1 and n 7 we give the following stopping

sequence:

N1 N2

Cycle 1 F1 S-
1 2

3
F2

Cycle 2 S7  S4
1 2

F8 5
1 2

6
F2

Cycle 3 is S9

truncated by S* S10

10a2 is selected after S2 . Note that we regard the sampling as proceeding

in cycles; within each cycle (except perhaps the last one) the outcomes

from each population are a sequence of successes followed by a single failure.

Here the last cycle is truncated by S

4

Remark 6.2: Note from S of Example 6.1 that R* is not a PW
2

sampling rule. (See Robbins [1956], Zelen [1969], Sobel and Weiss [1970].)

R* is PW within a cycle, but may not be PW as sampling progresses from
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one cycle to the next. Play-the-loser for R* corresponds to PW for R*.

Most of the sequential procedures proposed in the literature for the

Bernoulli selection problem employ a PW sampling rule.

Remark 6.3: If the experimenter knows that p1 
+ P 2 > 1 (P1 + p2 < 1)

then he presumably would use R* (R*). However, lacking such knowledge he

may be prepared to assume that (pl,P2) represent the outcome of a random

sample of size two taken from a Beta distribution

B(a,b): [F(a+b)/r(a) F(b)] xa -I (1 - x) b -
, 0 < x < 1, a,b > 0. Since

P{p > 1/2 (a,b)l - 1/2 for a > b, he may wish to replace the assumption

P1 + p2 > 1 (P1 + P2  1 1) by the assumption a > b (a < b), and chose

(a,b) accordingly to model his assessment of the particular situation under

study. Then he can use the following empirical sampling rule R* in con-

junction with (S*,T*).

Empirical sampling rule (RE

At stage m estimate p. (i 1,2) by Pim (z. + a)/(n i+ a + b).
1 imm i.m

f p +-p > 1 use R*, (6.2)f Pl,m P2,m

p + p < 1 usePl,m P2,m

p + p = 1 use either R* orPl,m P2,m

Remark 6.4: Based on limited calculation for selected (a,b) and n < 10

it appears that the E{N} - values ob-cained for R* and the optimal Bayes
E

sampling rule are very close. Here the expectation is taken w.r.t. the prior

BWta density.
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Note: Since P1,m Pi (i 1,2) for m , an error in the choice of

the particular (a,b) will have little effect on the performance of

(Pcj',S*,T*) when n is large.

6.2 Minimization of E{N1)

We had mentioned that in clinical tria~s it would be desirable to

minimize the expected total number of observations taken from the populations

with small p-values. Our next theorem addresses that issue for k = 2.

Theorem 6.2: Among all sampling rules R used in conjunction with (S*,T*)

for k = 2, R* minimizes E{N (1) (plp2)} for P[.21 > 1/2.

Remark 6.5: If PE2 3 < 1/2 it is not possible to find a stationary sampling

rule which when used in conjunction with (S*,T*) for k = 2 will minimize

E{N (1)1 (p1,P2)) for all (p 1 p 2 ), as is illustrated by the following example.

Example 6.2: Let k 2 and suppose that p[I] = 0.085, P[2 ] = 0.250.

Suppose that z ,1  , nl, 1 = 1, z2,1 = 0, n2,1 = 0. Using dynamic pro-

gramming (DP) it can be shown that at stage 1 the sampling rule that
minimizes E{N(}I for this particular pair (p[l],P[2]) with P[2] < 1/2

and outcome (1,1;0,0) is "Select the next observation from F2 if

n = 2; select the next observation from RI if n = 3." Thus the optimal

sampling rule depends on n, and hence is not stationary.

6.3 Minimization of E{NF I.

In clinical trials it is undesirable to obtain failures with any of the

treatments employed in the trial. Our next theorems relate to that problem

for k = 2.
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Theorem 6.3A: Among all sampling rules R used in onjunction with (S*,T*)

for k = 2, R* minimizes E{NFI(pIp2)) for P > i.

Theorem 6.3B: Among all sampling rules R used in conjunction with (S*,T*)

for k = 2, R* minimizes E{NFI(plp2) for P[2 ] < 1/2.

Remark 6.7: If p1 + p2 < 1 and P[2 ] > 1/2 there exist points (plp 2 )

such that neither R nor R* when used in conjunction with (S*,T*) for

k 2 will minimize E{N I(pIP 2 )}, as is illustrated by the following

example.

Example 6.3: Let k = 2 and suppose that n = 2 and P[l] = 0.10, P[2] = 0.55.
Suppose that zl 1, n 1, z 0, n 0; using DP it can be

z1  f 1 ,1  2 ,1  2,1
4 Fshown that at stage 1 the R that minimizes E{N } for this particular pair

(pEl],P[2]) and outcome is R*. Suppose now that z, 1  0 0, n, 1 = 1,

z2,1 = 0, n2,1 = 0; using DP it can be shown that at stage 1 the R

that minimizes E{NF } for the same particular pair (pE1],P[2]), but different

outcome is R.

Theorems 5.1, 6.1, 6.2 and 6.3 summarize four highly desirable

properties of R* when used in conjunction with (S*,T*) for the two-

pnpulation Bernoulli selection problem. In Section 7 we consider sampling

rules for the k-population (k > 3) problem.

7. A proposed sampling rule for Goals I and II for k > 2

In this section we propose a natural generalization to k > 2 of the

sampling rule R*. This generalized R* (which we still will refer to as

R* since it reduces to R* when k = 2) when used in conjunction with

(S*,T*) is thus a member of the class of sequential procedures described in
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Section 4; hence Theorem 5.1 appli. We describe some of its desirable

properties in Section 7.1, and conjecture an optimal property in Section 7.2.

Generalized sampling rule (R*):

At stage m (0 < m < kn-l), if sampling has not stopped, take the next

observation from the population which has the smallest number of failures

among all H. for which n. < n (1 < i < k). If there is a tie among such
1 l,m - -

equal-number-of-failure populations, take the next observation from that one

of them which has the largest number of successes. If there is a further tie

among :uch equal-number-of-success populations, select one of them at random

'ITI1 tak, the next observation from it.

Remark 7.1: We can think of the sampling rule R* as proceeding in cycles.

Before the start of sampling the populations are arranged in random order,

say, H, ,,j. The first cycle is started by taking one observation at

a time from N' until a failure is obtained. Then observations are taken

one-at-a-time from R' until a failure is obtained. This process is continued
2

until every population has produced a sequence of successes followed by a

single failure. Then the first cycle is complete, and every population has

produced exactly one failure (unless truncation has occurred during the cycle).

Cycle i is started by taking observations from the population which has the

largest cumulative number of successes through cycle i - 1 (1 < i < c)

where c is the random total number of cycles until the termination of

sampling. That population is sampled until a failure is obtained. The cycle

is continued by sampling from the population which has the second largest

cumulative number of successes through cycle i - 1, and sampling from that

population is continued until a failure is obtained. This process is continued

until in cycle i every population has produced a sequence of successes

7 - --
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followed by a single failure. Then the ith cycle is complete, and every

population has produced a cumulative number of exactly i failures

(unless truncation has occurred during the ith cycle). If within a cycle

two or more populations which have not yet been sampled in that cycle have

the same cumulative number of successes through cycle i - 1, then they are

sampled in random order.

Remark 7.2: Sampling rule R* had been proposed earlier for k > 2 by a

referee of Sobel and Weiss [1972a]; see the sampling rule RI referred to

on pp. 18C9 and 1824 of their paper. This sampling rule was to be used in

conjunction with a stopping rule based on inverse sampling. However, as

noted above, our motivation for proposing R* is that it is a natural

generalization to k > 2 of the sampling rule of (6.1).

Example 7.1: To illustrate the sequential p--ocedure which employs (R*,S*,T*)

for k 3, s = 1, n = 8 we give the following stopping sequence:

1 2 3

5 1 4S1  S2  F

1 2 3
6 2

Cycle I FI  S1 2

3
F2

9 7 13
S 1 S 2 S31 2 3
10 8 1 4

Cycle 2 S1  F F

S11S1

12F1

Cycle 3 is S15
1

truncated by S* 16
S1

IS
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R 1 is selected after S1 6

Remark 7.3: The stopping sequences given in Examples 4.1 - 4.4 could have

been obtained using (R*,S*,T*).

Example 7.2: We illustrate Theorem 5.1 by calculating the exact P{CS}

when (Rss,T ss) and (R*,S*,T*) are used for k = 3, s = 1, n = 1 (as in

Examples 4.1).

Table 7.1

Outcomes i/ Probability of Stopping sequences Probability of

l1ading to C/- outcome to C stopping sequencei_/ ledn1oC /

for (RssTss and then CS for (R",S*,T* ) and then CS

1 P
11I 27S 3 )  1 P2 P3 3 S 3  3k

(1s 1p) 1 2 1- !
I2'$3) P 2 F1 S3  3 l) P3

(S ,F2  3 (1-p ) 23 F1  2 1 (l-p )I p)
S1 2F3F)1 1 P3

1  2  
(-P(FlIF~~ ( 1P)1p) )12_(1_-p2)

(F,2,S3) ( 1P (-2)3P3 1 2 2 -P

1  2

2' 1 2 3 3 FI-P 3 22 1

P{CS} = 3 (p 1+p 2-2 p 3 ) + 612 p 1 P2 1 (+2)P3 ]

-/For simplicity of notation in this example we have assumed that

max(p1 ,p2 ) < p3.

7.1 Some properties of the procedure (R*,S*,T * )

The sequential procedure employing (R*,S*,T*) has the following properties

for k > 2:
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a) P{cSI(R*,S*,T*), p) = P{CSI(Rss,Tss), p} uniformly in p for

both Goal I and Goal II.

b) For Goal I

min{sn, (k-s)n} < N < kn - 1,

and for Goal II

sn < N < kn - 1

for all p. These bounds on N can be achieved.

C) 1 kn - E{M (100) k - s (100)c)k(oo kn - k

for Goal TI and analogously for Goal I for all p.

Here (kn - E{N})100/kn is the percent saving in expected total

number of observations if (R*,S*,T*) is used in place of the corre-

sponding single-stage procedure. This saving is always positive and can

be very large for P[, l1.

d) PIN = snlp} - 1 for pl] 1 for Goals I and II,

P{N = kn - sip} + 1 for PIk] 0 for Goal I,

P{N = kn-ljp} - 1 for P~k] - 0 for Goal II.

e) Populations with small p-values tend to be sampled less

frequently.

f) No special tables of constants are necessary to carry out

S*,T*) for k > 2, and it is very easy to implement.

We note from b) that using R* instead of an arbitrary R with

(S*,T*) yields a smaller upper bound (kn - 1 instead of kn) for N.

The fact that the sequential procedure employing (R*,S*,T *) is closed

increases its potential for use in real-life applications.
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7.2 Some conjectures concerning the procedure (R*,S*,T*)

For k > 2 we make a conjecture for (R*,S*,T*) that is a general-

ization of Theorem 6.1. The conjecture is made only for the case s = 1;

when s > 1 the situation is much more complicated, and it is very difficult

to conjecture an optimal sampling rule even for a limited region of the parameter

space. (See Remark 7.7.)

Conjecture 7.1: Among all sampling rules R used in conjunction with

(S*,T*) for k > 2, s = 1, R* minimizes E{NIp} for P[ll + P[ 2 ] > 1.

Note: If this conjecture is true then for s k - 1 generalized R*

(defined in the obvious way) minimizes E{NIp} for + [ i% P[k] +P[k-1]

Remark 7.4: Conjecture 7.1 was checked numerically for k = 3, s = 1,

n = 1(1)6 over a fairly fine grid in the region P[1 1 + P[2 ] > 1, and

was found to be true.

Remark 7.5: For k = 3, s = 1, n = 1(1)6 the condition P[1 ] + P[2 ] > 1

of Conjecture 7.1 is not necessary. For example, it was found by solving

the dynamic programming equations on the computer that R* minimizes

L{NIp} for (p[l],P[ 2 ],P[ 3 ]) (0.35, 0.5, 0.7).

Remark 7.6: For k = 3, s = 1 it is not possible to find a stationary

sampling rule that minimizes E{NIp} for all p such that P[1 1 + P[2] <1

as is illustrated by the following example:

Example 7.1: (k = 3, s 1, n > 3) Let (p[l],P[2 ],P[3 ]) = (0.4, 0.5, 0.6).

[1'[]P3
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Consider the outcomes

TI 12 113

4 1S2  S3
2 3

5 2S2  S3
2 3

F
3

3

For n = 3 the optimal sampling rule takes the next observation from R1

while R* takes the next observation from R12 . However, for n = 4 the

optimal sampling rule takes the next observation from 112. Thus the optimal

sampling rule is not stationary.

Remark 7.7: For (k = 3, s 2, n = 3), Goal I, the following example shows

that R* used with (S*,T*) does not minimize E{NIp} for any p such

that 0 < P[1] P[3] < 1:

Example 7.2:

1I1 112 113

3 2 1
1  2 3

S4

R* takes the next observation from Nl" However, the optimal sampling rule

takes no more observations from RiV but chooses at random between 12 and

R 3 for the next observation. (A similar example can be constructed for



k > 3, k > s > 1.)

In Theorems 6.1 - 6.3 and Conjecture 7.1 we have limited con-

sideration to a class of sampling rules which take at most n obser-

vations from each of thQ k populations, and which are used in conjunction with

(S*,T*). We believe that the conclusions given in these theorems and

conjecture hold for a broader class of stopping and terminal decision rules.

Our belief is summarized in the following conjecture.

Conjecture 7.2: Among all sampling rules R used in conjunction with a

stopping rule (S) and terminal decision rule (T) which achieve the same

P{CS} as (Rss TSS) uniformly in p, (R*,S*,T*) has the optimal properties

described in Theorems 6.1 - 6.3 and Conjecture 7.1.

8. Performance of (R*,S*,T*) relative to that of other Bernoulli selection

procedures.

For the purpose of comparing the performance characteristics of

(R*,S*,T) with those of some competing Bernoulli selection procedures,

we have categorized the latter into two groups: those that achieve the same

P{CS} as (R*,S*,T*) uniformly in p, and those that do not.

8.1 Procedures having the same P{CS} as (R*,S*,T*)

a) Hoel [1972] proposed a closed sequential procedure for k = 2

employing a PW sampling rule (R w). It can be shown that Hoel's pro-

cedure employs the stopping rule (S*) and terminal decision rule (T*).

His stopping rule depends on a constant r which is actually the same for

specified {A,P*} as the n-value necessary to implement the Sobel-Huyett

single-stage procedure (Rss,TsS) for the same specification. Thus

(R pwS*,T*) achieves the same P{CS} uniformly in p as do (R*,S*,T )
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and (Rss, T ss). Hoel gives tables of r-values for A* = 0.1, 0.2, 0.3

and P* = 0.90, 0.95, 0.99. Using these (r = n) values for (R*,S*,T*)

and (Rpw, S,T*) we have found by exact calculations (for configurations

with P[i] = P[2] and P[2] = P[i] + A) that E{NIp; (R*,S*,T*)}

< (>) E{NIp;(Rpw,S*,T*)} if pl + P2 > 1 (< 1); however, E{Nlp; (I',,S*,T*)} < <

E{Nlp;(RpwS1*,T*)} if p1 + p2 < 1. The E{NIR*) and E{NIR*1 inequalities

for p1 
+ P 2 > 1 and p1 + p2 < 1, respectively, follow, of course, from

Theorem 6.1. Moreover, it follows from Theorem 6.2 that

E{N( 1) jp;(R*,S*,Tl) < ErN(1)Ip;(RPW, S*,T*)1 if P[2] > 1/2; in fact,

it appears from our coputations that the inequality holds for all P[2] > Pi]"

See also Pradhan and Sathe [1974].

b) Nebenzahl and Sobel [1972] proposed two sequential procedures, the

first employing a vector-at-a-time sampling rule (RVT) and the second

employing a PW sampling rule (R w), both stopping when a fixed total

number of observations nT had been taken. They (N-S) chose nT to

guarantee the {A*,P*} indifference-zone probability requirement. N-S

showed that for the same nT both procedures achieved the same P{CS}

uniformly in p, and that the total number of observations taken from the

population with P[] was never more for Rw than for R VT. If nT

is even (odd) it can be shown that the P{CS} using (R*,S*,T*) with

n = n T/2 ((nT +1)/2) is equal to that achieved by the N-S procedures with

nT, uniformly in p. Also, if nT is even (odd) then E{N} using

(R*,S*,T*) with n = n T/2 (n = (nT +1)/2) is smaller (smaller except when

Pl = P2 = 0) than that obtained using the N-S procedures with nTs

uniformly in p. See BUringer, Martin and Schriever [1980], p. 262, for

further comments. Also see Pradhan and Sathe [1973], [1976].
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c) Bofinger [1978] proposed a variant of a PW sampling rule with

curtailment which is applicable to the Bernoulli selection problem for

k > 2. She considered our Goal I, her "best" populations being the ones

associated with {p[l],p[2],...p[k-s]}. (Her PW corresponds to our

play-the-loser.) Bofinger's procedure achieves the same P{CS} uniformly

in p as does (R SS,T SS) which uses the same n-value, and hence also as

does (R,S*,T*). It would appear that generalized ( h,S*,T*) would have

smaller E{N than that of Bofinger's procedure, at least for s =k - 1

when 1[k] + P[k-l] < 1. (See our Conjecture 7.1.) However, we have made no

computations to verify this assertion.

8.2 Procedures having different P{CS} from (R*,S*,T*)

a) Sobel and Weiss [1972a] proposed open sequential procedures for

k > 2 employing VT and several PW sampling rules all of which employed

a stopping rule based on inverse sampling. All of the Sobel-Weiss (S-W)

procedures stopped sampling as soon as any population produced r successes.

The constant r was chosen to guarantee the {A*,P*} probability requirement,

and was shown to have the same value for all of their procedures. (Berry and

Young [1977] proved that these procedures using the same r achieved the same

P{CS} uniformly in .) However, if r of the S-W procedures and n of

the Sobel-Huyett (S-H) procedure were chosen to guarantee the same {A*,P*}

requirement, then the P{CS} achieved by these procedures is not the same

uniformly in p. If (R*,S*,T*) is used with the S-H n, then from Theorem

5.1 we have that the P{CS} achieved by (R*,S*,T*) and (RSS,TSS) is the

same uniformly in p, but this P{CS} differs from that of the S-W pro-

cedures which use the corresponding r. This fact makes it difficult to

compare the E{N} - values for (R*,S*,T*) with those of the S-W procedures.
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If p - 1 then the S-W procedures which use one-at-a-time

sampling have smaller E{N} than does the corresponding (R*,S*,T*).

However, if PCk - 0 then E{N} -* for the S-W procedures while

N < kn - 1 for (R*,S*,T*).

b) Berry and Sobel [1973] proposed a closed sequential procedure for

k 2 employing a PW sampling rule. Sampling stops when either population

produces r successes or both produce at least c failures. The constants

(r,c) were chosen to guarantee the {A*,P *} requirement; Berry and Sobel

(B-S) recommend the choice r = c as optimal. As with the S-W procedure,

the B-S procedure has a P{CS} - function which differs from that of

(R ss,T ss) if r = c and n are chosen to guarantee the same {A*,P * }

requirement. A fortiori the B-S procedure has a different P{CS} - function

than does (R*,S*,T*) which uses the n of (Rss, T ss).

The B-S procedure has very desirable E{N} behavior relative to that

of (R*,S*,T*), but less desirable P{CS) behavior. When we determined n

and r corresponding to the nine (A*,P*) combinations for A* = 0.1, 0.2,

0.3 and P* = 0.90, 0.95, 0.99 and set PE23 - P1l = A* with P[2]

varying we found that E{NI(B-S)} < E{NI(R*,S*,T*)l except in a small neighbor-

hood of (P1lP[ 2]) = (1/2 - A*/2, 1/2 + A*/2) where P{CSI(R*,S*,T*)}

achieves its minimum in the preference zone. (Note: P{CSI(B-S)} achieves

It. minimum in the preference zone at (P[l]P[2]) = (1/3 - A*/2, 1/3 + A/2)

and at (23 - A*/2, 2/3 + A/2); this result is an asymptotic (P* - i)

one.) However, P{CSj(B-S)} < P{CSj(R*,S*,T*)} except in apprcximately this

samp small neighborhood. Thus it appears that the decrease in E{N} for B-S

is purchased at the cost of a decrease in P{CS}. (Small changes in P{CS}

result in large rhanges in E{N} when the P{CS} is close to unity.) We

also found that max{NI(B-S)1 > max{NI(R*,S*,T*)} for most {A*,P*} of
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c) Schriever [1978/79] generalized the B-S procedure to k > 2.

His procedure which employs a PW sampling rule stops sampling when any

population produces r successes or every population produces at least

c failures. The constants (r,c) are chosen to guarantee the {A*,P * }

requirement; Schriever too recommended the choice r = c as optimal. At

this time we do not have sufficient exact calculations to compare the

performance of Schriever's procedure with that of (R*,S*,T*) for k > 2.
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Appendix: Proof of Theorem 5.1.

We shall prove Theorem 5.1 for the case s = 1; the proof for s > 1 proceeds in

a similar manner. In this Appendix we denote P[,] by pi, i.e., p1 < p2  <""

< Pk are the ordered p's. For 0 < mn < kn define

k
n({x ( .. ): 0 < y . n. = m}m m l,m' I,m; 'Ykm"k,m - Y,m - i i,m

where y, and in. are the number of successes and number of obser-

v,.tions, respectively, from Tt. through stage m (I S i S k). (Here w.
1=1

Lm: prob-bility of success pi.) To emphasize the dependence of yi,m

and n. on x we shall use the notation:

Y.(x) = Y.,' n.(X) n. (1 < i < k).
I In m I'M

!',tr 0 < in kn define the set of stopping states at stage m by

S n {X :2 s.t. y (xm) v.(x )+n-n.(x ) v $ ijm in m m M m

drd the set of continuation states at stage m by cn = n \ Sn .

m m M

kn kn

Let Sn u Snm and C u Cn.
m=O m m=0
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Define the probability of reaching state x along any feasible path

uLsing sampl[ing rule R by

PR(XIT) = aR(XI )P ( X)

wherc k yi(x ) x.(x )-Yi(xm)
P(x) f1 n m

P(X 9 p (1-p.)

and aR(x ) is the randomization coefficient employed by R.

If it is not possible to reach state x using R, then it is clearm

that PR(xm ) = 0. In this situation define aR(x ) = 0. Note that

aR(x ) depends only on the rule R and in particular is independent

of the pi's; aR(xm) can and usually does depend on the data.

Example A.1: Suppose that R is PW for k = 2 with the following

modification: if at any stage the number of successes and failures is

the same for both populations, then take the next observation from one

of them at random.

Let n = 4, x5 = (2,3; 1,2). It is possible to reach state x5

d],:i. different sampling paths; two such paths are: sI = S1 F2 S1 S1 F1

1 l2 3 4 5
and s2 = S1 F 1 S3 F4 S1.

2 11 2 2 1.

1. Jw,

11trv.1,t11ln ';tl]te X ill)" 2 , 2(1, 2 (

tae p(i- (I-p2 Y : - P(x5) (A.2)]'{reaching, s.tate x5  along s2 : P(l-|,l )p -P2)p 2 P1=) 4A2

.. ~~~~~~~~~~~ 2 .1'-' ,1 2(l, -.-. -i."1:,, _.,I .. ,i=("'; 
.

- .....- ? , _..,., .. . ,
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Thus we see that for the particular paths of our example the coefficients

in (A.1) and (A.2), above, depend on the sampling rule R and the path

followed. For any particular R, aR(xm ) is the sum of all such

coefficients. To illustrate this latter point consider the following

example.

F:.imple A.2: Let R R SS* Here

PR(Xk ) = aR(xkn)F(xkn)

k i (x )kn n-y i(k)

i=l -Pi

k

i1 i(kn

Let K = {l,2,...,k} and A c K, A 0 0. Let WA  denote the set

c.of all stopping states, Xkn, which would lead to selection at random

,zm the populations in A, using (RsqTss), i.e.,

W ={ x n : Yi(xk) max y.(x ) V i c A
A k, k k l <j<k j kn

Yi(xkn) < max yj(Xkn) V i ' A).

rh:ct let VA denote the set of all stopping states, xm which for

..Ifk: m lead to selection at random from the populations in A,

ki, i (R,S*',T*), i.e. ,

VA {X S n (1 i. m < kn): yi(xm) > y,(xm) +n -n.(x) V j i iff i c A)

A ~ m m
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n n
Let x c *n (0 < m < kn) and x E . We will say that xcm m = kn n" We cils ht Xkn

if it is p- sible to augment x by the remaining observations which

!1,., no)t yet been tA'en to obtain Xkn, i.e., if

o < y.(xn) - y x ) < n-n.(x ) (i < j < k).

F','l A.3: rtut k 2, n = 2 and suppose that x2  (0,1; 1,1) C Q2

2
ind x 4 = (1,2; 1,2) Q. Then x2 C x 4  since

0 < yj(x) - y(x ) < 2-n (x2 ) (j 1,2).
4 j 2 2

Let x C xkn. Define the 'difference' between the original state and

t:Le augmented state by

d(xm'xkn) -- {Y(d(xm' kn)),n (d(xmtxkn

.. ;.Yk(d(xmxkn)),nk(d(xmxkn))}

where

y.(d(x M , x k n  y _ knj k).
kn()kn) y.C(xr)

Cl j k)

nj (4(xmxkn)) n-n.(x )

k V i(.1n)-Yi(xm) n-ni (x)-y i(xkn)+yi(xm)P(d(xmk) = n PI lPi

Ind

k yi(x n-Y
P(XM)P(d(x ,k)) =fl1 Pi (l-pi)

P(Xkn)• (A.3)
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S"ince p. is the largest of the p's and k c A implies correct

;el,,ction with prob-bility 1/jA , we can writ,

CA: AcK, kA XknWA ss(x (A.

A: AFK, kEA xcVA

FLCr x C S let E n(x) denote the set of all possible augmenta-

ti.:ris Xkn of x , i.e.,
in n

E 1 (x){x C 11n x C xnm kn kn" m kn

To prove Theorem 5.1 we shall use the following lemmas.

n
LWnma A.l. Let x ( S . Then,

,k (y n-nm(x)

rI i P(d(xmx)) = 1.
xknE (x In i xk i) / i k

Proof: When we conifler all possible augmentations of x we have k

independent binomial distributions with parameters (n-ni(x ),p.)

( -.i < I . Hence, l.h.s.

;I-CI (x . . -nk(x In k)x -n (xm ))  y j n-ni (Xm)-y.

yl=O 1 \/ Y-

k -n i ) ( n-n(x) Y, n-n(x )-Yi

P (1-pi) m 1
i:l y1=0

1 = . [ '
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L::J, A.2. Let xm V A  and suppose that xm c x kn Then

Xkn u WB. In other words, if x is a stopping state using R
B A

which leads to selection among the populations in A, then if x

is du)rmented to r'btain xkn, we will at most randomize among the

•ehenmnts of a zuporset of A.

ill'of: X e V

-" y.(xm ) " .l(xm ) ± (n-n.(x , )) V J # i, V i E. A.

M m m j n1

iI llefl:. , )( c X
m kn

-Yi.(Xkn) Yi(xm )

> yj(x ) + (n-n.(x )) V j / i

> y.(x ) + (y (xkn) - y.(x ))

m y (Xkkn)

i.e., Yi (X kn) yj(xkn) V j $ i, V i c A

irid i.os:;ibly for !iome i i A. Thus it follows that yi(X kn max y (xkn),
kn 1 j5k n

t l',;t for all i A. Hence, Xkn ' WB  for some B D A. Therefore,

x C~ ( U W.
xh kn X kn-B, B'

Note: If X W and if x c Sn is n.t. x c for some m,-l)e I kn '- A ad i mn i nn froe

I h,"h x F U VB .
13c AB

, ln and suppose R is any sampling rule which
....::,A A.3. I t x kn S1 kn

t ikvs no more than n observations per population. Then,
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(x(x (y,(

nk

1 r ) wlii - (R. -QTS is tlpl ind. Also conis derv the

j v. - UIbi ,-,topping ". ,.tes x inC x k. If (R,S*,T*) is used instead of

(R .T.I.) for the sarne xk we will stop at some stopping state

X1 X Cloarly,

P {terni illt ion ur ing, ( R,S* ,T*)l u i ng R,.

Piterminate at state x n; complete x Into x k
x~ mknknRSSk

Pft,-tvmiinate at state x i P~complete xmi to x knIXmIn

P (x )=1
XmC K-n .Z .S

)F k, n-n. (xn)x
X I II x (xi'x ))I

xV~ Cm kn R,,

' in

x Xkn III 1 (x )

k, - (x ))P(xmPdxyk)

iirwp, vqi;:it ion (A .3 ) we obtain
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aRX)i~l (Yi(xkn)-Yi(Xm') P(xkn)

k
Xmcxkn RP(x )i=, (Yi(n )PX

Thus aR(x = (yin
Xm~~Cx kn i=l GYi(kn)-iX )  ilY(k

0

Lemma A.4. Let Xkn E WB1 k E B. Then,

k ( n-ni(x)\ k
JAI x ~x 1 x x .X II(

A: AcB, T-x :i nkn 1 i i=]ii(Xkn(T
kA XVA (A.6)

Pr, of: 1i BI 1, the:n the Lemma is tvue by Lemma A.3, since

Ac B, k e A - A B and x xkn M A V

Suprncse !BJ > 1.

Let r : B, r k. Now, rt,k B ind Xkn, WB

> Yr(Xkn) yk(xkn) = mdX Y.(xk) "

Since yr(xkn) = Yk(xkn), and recalling that the pairing of the pi]

with the H. (1 < i,j < k) is completely unknown (and that the populations
] =

are tagged in such a way that their ordering is unique), it can be seen

that interchanging the labels r and k would lead to the same stopping

states contained in xkn with the same randomization coefficients. Thus

L a kl n-n i(x m)x

A: AcB, JAI xaR(x) i Yi(xkn)-yi(xm))
k A (A .7)

x EV
m A

. ]RX) k n-ni(x)

I, A: MB, JAI xx.j R L mirf M~rA: _ XM~kn, i 1 Gi ( n ) - y i (~r- . A x VA
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He:--, the i.h.s. of (A.6)

1 1 1' (

r-1 A: CiB (xT ~ R ) , (n1m1( )
R~ XmCkfl kn -Yi xm)

x EV A
which using (A.7)

- k n-n.(x m)
a. (x I 1 (n7B JA x kn )y~mBI reB A: AcB, M k ' R MY (x )Y mu

VeA A 
F

The above equals

1 1 k n-n .(x

~A, AcB rCA x xkn' i=1 (yi()kn)yi("m))

k r-n.(x)

I~~ A: AcB x ~ (m a.n = ik m )

x EV A

k n-n (x)
-I T a R (x ) T y ~

r Mkn 1 ikn

1by the note foI'Lowing Lemma A .2,

1 k n'

- =W 1I (.yi(xk9

by Lemma A. 3. f

We now proceed with our proof of Theorem 5.1.

Proof: F'rom equation (A.5) we have



Pfc I( R,S*',, U:: )I (I 1R
A: AcK, V A

A: AK, T ~n * ?~ aR(x)P(xm)
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J - single-stage procedure of Sobel and Huyett [1957] which takes exactly n

observations from each of the k populations. We propose a one-at-a-time

adaptive sampling rule (R*) which when used in conjunction with a particular

stopping rule (S*) and terminal decision rule (T*) achieves the same prob-

ability of a correct selection as does the single-stage procedure uniformly.in

= (pl,...pk). Letting N denote the random total number of observations to

terminate sampling using the procedure (R*,S*,T*) we show that n < N < kn-];

for P[k] - 0 we have PN = kn-i 1 while for P[1] - 1 we have*
P{N = n I k} 1 1. For k = 2 the sampling rule R* (the conjugate sampling_ /
rule 7-) which is stationary is optimal in the sense that it minimizes /

E{N!(plp 2)} uniformly in (pl,p 2) for p1 + P2 > 1 (p1 + p2 
< 1) among #al

sampling rules which use (S*,T*) and which take no more than n observations

from either population; R* has additional optimal properties for k = 2.-The

procedure (R*,S*,T*) is generalized for k > 2 to accommodate such nas: dS

"Selecting the s (1 < s < k-l) "best" Bernoulli populations with regard to

order," and is shown to have desirable properties for these goals as well.

Some conjectures are made concerning the optimality of (R*,S*,T*) for k > 2.

The performance of (R*,S*,T*) is compared for k > 2 with that of other

sequential selection procedures that have been proposed in the literature. An

extensive bibliography is included.
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